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Abstract
The ‘signature method’ refers to a collection
of feature extraction techniques for multivariate
time series, derived from the theory of controlled
differential equations. There is a great deal
of flexibility as to how this method can be
applied. On the one hand, this flexibility
allows the method to be tailored to specific
problems, but on the other hand, can make
precise application challenging. This paper
makes two contributions. First, the variations on
the signature method are unified into a general
approach, the generalised signature method, of
which previous variations are special cases. A
primary aim of this unifying framework is to
make the signature method more accessible to
any machine learning practitioner, whereas it is
now mostly used by specialists. Second, and
within this framework, we derive a canonical
collection of choices that provide a domain-
agnostic starting point. We derive these choices
as a result of an extensive empirical study on
26 datasets and go on to show competitive
performance against current benchmarks for
multivariate time series classification. Finally,
to ease practical application, we make our
techniques available as part of the open-source
[redacted] project.

1. Introduction
A multivariate time series is obtained by observing d
quantities evolving with time, which can be written as an
array x = (x1, . . . , xn), where n is the length of the
series, and xi ∈ Rd for each i ∈ {1, . . . , n}. These data
are common in various fields (finance, health, energy...)
and offer several specific challenges: they are often highly
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dimensional, as both the number of channels d and the
length of the series n may be large, the values xi are
correlated, and the different channels may interact. Finally,
the inputs may be of different length and the data may be
irregularly sampled.

One approach is to construct models that directly accept
some of these issues; for example recurrent neural
networks handle correlated inputs with varying lengths.
A second option is to use feature extraction techniques,
which normalise the data so that other techniques may
then be applied. Methods such as the shapelet transform
(Ye & Keogh, 2009; Grabocka et al., 2014; Kidger et al.,
2020), Gaussian process adapters (Li & Marlin, 2016;
Futoma et al., 2017; Moor et al., 2020), and in particular
the signature method (Levin et al., 2013), all fit into this
category.

The approach taken by the signature method, coming from
rough path theory (Lyons et al., 2007; Friz & Victoir,
2010), is to interpret a multivariate time series as a
discretisation of an underlying continuous path. The
signature transform, also known as the path signature or
signature, can then be applied, which produces a vector of
real-valued features that are known to characterise the path.

Benefits of the signature method include: a high degree
of flexibility, making it possible to customise the method
to specific datasets; strong theoretical guarantees; an
interpretable feature set; ease of handling irregularly
sampled and/or partially observed data; and it being well-
defined for some highly irregular processes such as ARMA,
Gaussian processes or even Brownian motion. Also,
signature features do not need to learned, which can make
them particularly effective on (but not limited to) low
sample datasets.

The flexibility of the signature method has made it possible
to be tailored to specific applications and achieve state-
of-the-art performance in wide range of problem domains,
such as handwriting recognition (Wilson-Nunn et al., 2018;
Yang et al., 2016b), action recognition (Yang et al., 2016a;
2017), and medical time series prediction tasks (Morrill
et al., 2019; 2020b). However, this flexibility comes at the
cost of additional complexity in the model search space.
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Figure 1. Geometric depiction of the depth-2 signature and log-signature. The depth-1 term of both transforms equate to the
displacements of the path over the interval in each coordinate, these being ∆X1,2. Left: The signature. Depth-2 terms S(1,2), S(2,1)

correspond to the areas of the blue and orange regions respectively. Right: The log-signature. Only one depth-2 term which is given by
the signed area A+ −A−. This is known as the Lévy area of the path.

To the best of our knowledge, no comprehensive studies
exist that collate and combine the most common method
variations found in the literature and assemble them under
a common mathematical framework. Additionally, no
baseline signature model has ever been tested against other
time series classification baselines. Our goal will be to
address both of these issues, alongside the development of
an open source implementation, so as to make the methods
more accessible to a wider audience.

Contributions We introduce a generalised signature
method that contains the many existing variations as special
cases. In doing so we are able to understand their
conceptual groupings into what we term augmentations,
windows, transforms and rescalings. This involves a
comprehensive review of the existing variations across the
literature. By understanding their commonality, we are
then able to combine different variations, and propose new
options that fit into this framework.

We go on to examine which choices within this framework
are most important to success by performing an extensive
empirical study across 26 datasets. To the best of our
knowledge this is the first study of this type.

In doing so, we are then able to produce a canonical
signature pipeline. This represents a domain agnostic
starting point that may then be adapted for the task at
hand. We show that the performance of this canonical
pipeline is comparable to current state-of-the-art classifiers
for multivariate time series classification, including deep
recurrent and convolutional neural networks. This has led
to the implementation of this generalised approach in the
open source [redacted] package.

2. Context
2.1. Background theory

We begin with a few mathematical definitions necessary
throughout the article.

Definition 1. Let d ∈ N, we denote the space of time series
over Rd as

S(Rd) = {(x1, . . . , xn) |xi ∈ Rd, n ∈ N, n ≥ 1}.

If d = 1, then x is a univariate time series, whereas
if d > 1, x is a multivariate time series. Given x =
(x1, . . . , xn) ∈ S(Rd), n is called the length of x and d
its dimension or number of channels. We assume that in
addition to the array of values x ∈ S(Rd), we have access
to a vector of increasing time stamps t = (t1, . . . , tn).
If the data is regularly sampled, then t can be set to t =
(1, . . . , n), which will often be the case.

We consider a dataset to be a collection of such samples.
Note that the time stamps t for each sample may be
different, and the sample lengths n can vary. That is,
we accept varying length and irregular sampling without
modification. We are now in a position to define the
signature of a time series.

Definition 2. Let x ∈ S(Rd) and t = (t1, . . . , tn) its
associated timestamps. Let X = (X1

t , . . . , X
d
t )t∈[t1,tn]

be a piecewise linear interpolation of x such that for any
i ∈ {1, . . . , n}, Xti = xi. Then the depth-N signature
transform of x is the vector defined by

SigN (x) =
(
{S(x)(i)}di=1,

{S(x)(i,j)}di,j=1,

. . . ,

{S(x)(i1,...,iN )}di1,...,iN=1

)
∈ R

dN+1−1
d−1

where for any (i1, . . . , ik) ∈ {1, . . . , d}k,

S(x)(i1,...,ik) =

∫
· · ·
∫

t1≤u1<···<uk≤tn

dXi1
u1
. . . dXik

uk
∈ R.

While this definition may seem somewhat technical, there
are several intuitions that can be made with regard to the
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signature features. We present a geometric interpretation
of the first two levels of the signature and log-signature
in Figure 1. The depth-1 terms, S(x)(i), equate to
the displacement of the path over the interval in the ith
coordinate, denoted by ∆Xi in Figure 1. The depth-2
terms, S(x)(i,j), have interpretations in areas generated
over the interval.

From a statistical point of view, the signature can be
thought of as the equivalent of a moment-generating
function for time series. Let Z be a random variable, then
the moment-generating function of Z is the function

t 7→ E[etz] =

∞∑
k=0

tk

k!
E[Zk]

and, if well-defined, it characterizes the distribution of
Z. Assume that X is a random time series (that is
a stochastic process), its signature now has the same
properties as a moment-generating function: the powers of
Z are replaced by integrals of products of coordinates and
Chevyrev & Lyons (2016) show that the expected signature
characterizes the law of X .

Moreover, we have the following two properties that make
the signature a good feature set in a machine-learning
context—precise statements may be found in Bonnier et al.
(2019, Appendix A).

Uniqueness Hambly & Lyons (2010) show that under
mild assumptions, the full collection of features Sig(x) =
limN→∞ SigN (x) uniquely determines x up to translations
and reparametrizations.

Universal nonlinearity Linear functionals on the
signature are dense in the set of functions on x. Suppose
we wish to learn the function f that maps data x to labels
y, the universal nonlinearity property states that, under
some assumptions, for any ε > 0, there exists a linear
function L such that

‖f(x)− L
(
Sig(x)

)
‖ ≤ ε. (1)

Note that contrary to Fourier or wavelet basis, signatures
provide a natural basis for functions of the time series
rather than for the time series itself—equation 1 concerns
f(x) and not x. In the context of time series classification
this shift of perspective is particularly well-suited since the
object of interest is not the time series itself but its link to a
label.

From a computational point of view, computing the depth-
N signature of a time series x ∈ S(Rd) of length n
has a complexity of O(ndN ), which can be done with
high performance software (Reizenstein & Graham, 2018;
Kidger & Lyons, 2020). The size of the depth-N signature

is (dN+1−1)/(d−1) so the memory cost is independent of
the series length n, which is a huge advantage when dealing
with high frequency time series. Note that small values of
N already show a good performance—for example N = 3
in the baseline algorithm—so the exponential dependence
on N is not a huge computational bottleneck.

Logsignature transform The signature contains some
redundant information: for example we can see in the left
panel of Figure 1 that the sum of the blue and orange areas
is equal to the product of displacements ∆X1∆X2:

S(x)(1,2) + S(x)(2,1) = S(x)(1)S(x)(2).

The logsignature transform is essentially the signature with
these redundancies removed. For example, the logsignature
encodes the blue and orange areas from the left panel
with the orange signed area in the right panel. However,
the logsignature does not have a universal nonlinearity
property such as equation 1. We refer the reader to Morrill
et al. (2020a) or Liao et al. (2019, Section 2) for a precise
definition of the logsignature.

A pedagogical introduction to the background theory of
signatures is Lyons et al. (2007), whilst a comprehensive
textbook is Friz & Victoir (2010). For introductions to
the signature method, we recommend Bonnier et al. (2019,
Appendix A) and Chevyrev & Kormilitzin (2016).

2.2. Related work

The signature transform has been used in a wide range
of applications in machine learning predictive tasks. For
example, as mentioned in the introduction, the signature
has been used as a feature extraction layer in classifiers for
both Arabic (Wilson-Nunn et al., 2018) and Chinese (Yang
et al., 2016b) handwriting recognition. Similarly, it was
successfully used in human action recognition by Li et al.
(2017); Yang et al. (2017); Liao et al. (2019) and in the
medical domain as part of the top performing model at the
Physionet 2019 challenge for prediction of sepsis (Reyna
et al., 2019; Morrill et al., 2019; 2020b). Other applications
involve finance (Lyons et al., 2014; Perez Arribas, 2018),
mental health (Kormilitzin et al., 2017; Arribas et al.,
2018), and emotion recognition (Wang et al., 2019; 2020).

In almost all these applications, the method has been
utilised in different ways. Many authors consider
transformations of the input time series before application
of the signature (Levin et al., 2013; Flint et al., 2016; Lyons
& Oberhauser, 2017; Yang et al., 2017; Liao et al., 2019;
Kidger & Lyons, 2020; Wu et al., 2020a). People have
also explored different windows over which the signature
transform should be taken, so as to extract information over
different scales (Yang et al., 2017; Bonnier et al., 2019).
Additionally a choice must be made between the signature
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and logsignature transforms, as must choices for the scaling
of the terms in the signature (Chevyrev & Kormilitzin,
2016; Lai et al., 2017).

The differences between some of these choice have been
shown by Fermanian (2019) to significantly impact the
performance of the methodology. However this study used
a small collection of datasets and considered only some
of the most common variations that exist in the literature.
There is therefore a need for a comprehensive study and
unification of all these different choices.

3. The generalized signature method
In this section we collate the modifications to the signature
transform that have been proposed in signature literature to
date. We will show that each can be categorised into one of
the following groups:

• Augmentations These describe the transformation
of a time series into one or more new series, in order
to return different information in the signature features
and deal with dimensionality issues.

• Windows Splitting the time series over different
subsequences (or windows), so that signatures may be
applied locally.

• Transform The choice between the signature or the
logsignature transform.

• Rescaling Ways of normalising the terms in the
signature.

We then go on to show that these groupings can themselves
be synergised into a single mathematical framework that
we term the generalised signature method. For clarity, we
will begin by discussing each of these individually, and
then afterwards show how they may be combined.

As before, assume that we observe some collection of
sequences x ∈ S(Rd) with timestamps t ∈ S(R).

3.1. Augmentations

We define an augmentation to be a transform of an initial
sequence x ∈ S(Rd) into one or several new sequences.
Augmentations have several different uses:

1. Remove the signature invariance to translation and/or
reparametrization.

2. Lower the dimension d of the time series, so that
higher orders of the signature are reachable—recall
that the depth-N signature is of size O(dN ).

3. Preprocess the time series prior to the signature map
so that information is more easily extracted.

For some e, p ∈ N, we define an augmentation as a map

φ : S(Rd)→ S(Re)p.

There are many pre-signature operations which have been
proposed in the literature, and which we categorise as
augmentations. We refer the reader to Appendix A for
full details of the many such operations proposed in the
literature, but will focus on several important examples
here.

Let us give some examples in the first group of sensitivity-
inducing augmentations. For any vector of increasing
timestamps t, we call time augmentation (Levin et al.,
2013) the operation φt : S(Rd) 7→ S(Rd+1) defined by

φt(x) =
(
(t1, x1), . . . , (tn, xn)

)
. (2)

This transformation, which basically consists in adding
the timestamps as an extra coordinate, has two key
properties: it guarantees the uniqueness of the signature
(Hambly & Lyons, 2010) and it adds information about the
parametrization of the time series.

Another example is the basepoint augmentation (Kidger &
Lyons, 2020), which is the map φb : S(Rd) 7→ S(Rd)
defined by

φb(x) = (0, x1, . . . , xn), (3)

which simply adds a zero at the beginning of the time
series—note that this zero could also be put at the end. This
transformation makes the signature sensitive to translations
of the time series. The invisibility-reset transformation
(Yang et al., 2017; Wu et al., 2020b) also adds translation
sensitivity, but does so by increasing the dimension.

In the second group of augmentations for dimensionality
reduction, we consider random projections (Lyons &
Oberhauser, 2017), which consist in applying multiple
random linear maps to the time series, or coordinate
projections, which project along (multiple subsets of) the
coordinate axes.

In the third group, the lead-lag augmentation (Chevyrev
& Kormilitzin, 2016; Flint et al., 2016; Yang et al., 2017)
captures the quadratic variation by transforming the time
series to

φ(x) =
(
(x1, x1), (x2, x1), (x2, x2), (x3, x2), (x3, x3),

. . . , (xn, xn)
)
∈ S(R2d).

Another important example of this kind of augmentation
are the stream preserving neural networks of Bonnier et al.
(2019), who learn a map φ from the data. They map
a time series in Rd to another series in Re by setting φ
to some neural network, typically either convolutional or
recurrent. We extend this idea by defining the multi-headed
stream preserving augmentation, which simply consists in
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stacking p such transformations. To our knowledge, this is
the first time that such learned augmentations are compared
to ‘handcrafted’ ones such as time, basepoint and lead-lag
augmentations.

Importantly, these various augmentations may be combined
together. For example, in order to add sensitivity to both
parametrization and translation, the time and basepoint
augmentations may be combined: first apply the time
augmentation, which gives a sequence φt(x) ∈ S(Rd+1),
and then the basepoint augmentation, which yields

φb ◦ φt(x) =
(
(0, 0), (t1, x1), . . . , (tn, xn)

)
. (4)

3.2. Windows

The second step is to choose a windowing operation.
Much like the window functions used with a short time
Fourier transform, this localises the signature computation
to extract information over particular time intervals.

We define a window to be a map

W : S(Re)→ S(Re)w,

for some w ∈ N. In short, W maps a time series in Re into
w new time series in the same space. The simplest possible
window is the global window, defined by

W (x) = (x), (5)

which outputs the time series itself. To get finer-scale
information, we consider three other types of windows:
sliding, expanding and hierarchical dyadic windows. For
x = (x1, . . . , xn) ∈ S(Re) and 1 ≤ i ≤ j ≤ n, let
xi:j = (xi, . . . , xj) ∈ S(Re) be a subsequence of x. Then,
a sliding window of length ` and step l is defined by

W (x) = (x1:`,xl+1:l+`,x2l+1:2l+`, . . .),

and an expanding window of initial length ` and step l by

W (x) = (x1:`,x1:l+`,x1:2l+`, . . .).

The expanding window produces time series of increasing
length, and is analogous to the history processes of
stochastic analysis whereas the sliding window produces
time series of fixed length but shifted in time.

Finally we consider a hierarchical dyadic window, which
captures information at different scales. Let q ∈ N be fixed
and assume for simplicity that 2q−1 divides n. Then, the
hierarchical dyadic window of depth q consists of q sliding
windows W 1, . . . ,W q , where W i has length and step both
equal to n2−(i−1). This yields w = 2q − 1 time series of
length n, n/2, n/4, . . . , n/2q−1. The larger the value of
q, the finer the scale on which the information is extracted.
If the other window functions are analogous to the short
time Fourier transform, then hierarchical dyadic windows
are analogous to the multi-scale nature of wavelets.

3.3. The signature and logsignature transforms

Central to the signature methodology is of course the
signature transform itself. Two choices must be made;
whether to use the signature or logsignature transform, and
what depth to calculate the transform to—that is, what
depth N in Definition 2 to use. Choosing a logsignature
lowers the feature vector dimension at the cost of loosing
linear approximation properties. There is no consensus on
which one should be favored for a machine learning task.

3.4. Rescaling

The depth-k term in the signature is of size O(1/k!).
Typically, rescaling these terms to O(1) will aid in
subsequent learning procedures. To this end, we can apply
pre-signature scaling whereby we scale the path before
signature computation, or post-signature where we scale
the signature terms themselves. Specifics on how this is
done in practice are given in Appendix B.

3.5. Putting the pieces together

Let φ : S(Rd) → S(Re)p be the final augmentation
function, φ : x 7→

(
φ1(x), . . . , φp(x)

)
, which can be

a composition of augmentations such as equation 4. Let
W : S(Re)→ S(Re)w, W : x 7→

(
W 1(x), . . . ,Ww(x)

)
,

be the window map, such that W j(x) ∈ S(Re) for any
1 ≤ j ≤ w. Let SN represent either the signature or
logsignature transform of depth N . Let ρpre and ρpost
represent the different types of features rescaling. Then
given an input x ∈ S(Rd), the general framework for
extracting signature features is given by the collection of

zi,j = (ρpost ◦ SN ◦ ρpre ◦W j ◦ φi)(x) (6)

over all i ∈ {1, . . . , p}, j ∈ {1, . . . , w}. We refer to the
procedure of computing x 7→ (zi,j) as the generalised
signature method.

This final procedure is a little involved, but is simply a
combination of different elementary operations used to
impact the final feature set. The overall procedure now
offers a degree of flexibility and generality which has, to
our knowledge, never been achieved for signature methods.

The collection of features (zi,j) may then be fed into any
later machine learning algorithm, which will depend on the
application. In general, the zi,j will be stacked together
and considered as a vector. However, if one wants to
use a sequential algorithm such as a recurrent network,
it is possible to turn the features zi,j into a sequence by
choosing a sliding or expanding window. Indeed, these
windows induce an ordering in the features: the terms zi,1
will correspond to the first values of x, the terms zi,2 to the
following values, and so on.
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4. Empirical study
We perform a first-of-its-kind empirical study across 26
datasets to determine the most important aspects of this
framework.

4.1. Methodology

Datasets The datasets used are the Human Activities
and Postural Transitions dataset provided by Reyes-Ortiz
et al. (2016), the Speech Commands dataset provided by
Warden (2018), and 24 datasets from the UEA time series
classification archive, provided by Bagnall et al. (2018).
A few datasets from the UEA archive were excluded due
to their high number of channels resulting in too large a
computational burden.

Baseline We begin by defining a single baseline
procedure, representing a simple and straightforward
collection of choices for the generalised signature method.
This baseline is to take the augmentation φ as appending
time as defined by equation 2, W as the global window
defined by equation 5, have the transform be a signature
transform of depth 3, and to use pre-signature scaling of the
path. This means that the input features are the collection

z = Sig3 ◦ ρpre ◦ φt(x).

Individual variations With respect to this baseline
procedure, we then consider, in turn, the groups described
in Section 3. These were augmentations, windows,
transform, and rescaling. For each group we modify the
baseline by implementing each option in the group one-by-
one. Each such variation defines a particular form of the
generalised signature method as in equation 6. Example
variations are to switch to using a logsignature transform
of depth 5, or to use a sliding window instead of a global
window. We discuss the precise variations below.

Models On top of every variation, we then consider
four different models: logistic regression, random forest,
Gated Recurrent Unit (GRU) (Cho et al., 2014), and a
residual Convolutional Neural Network (CNN) (He et al.,
2015). We test nearly every combination of dataset,
variation of the generalised signature method, and model.
Different datasets and variations produce different numbers
of features zi,j , so to reduce the computational burden
we omit those cases for which the number of features
is greater than 105. Of the 9984 total combinations
of dataset, variation, and model, this leaves out 1415
combinations. See Appendix C.2 for a break down of the
omitted combinations by different cases.

Analysis We define the performance of a variation on
a dataset as the best performance across the four models

considered, to reflect the fact that different models are
better suited for different problems. We then follow the
methodology of Demšar (2006); Benavoli et al. (2016);
Ruiz et al. (2020) to compare the variations across the
multiple datasets. We first perform a Friedman test to
reject the null hypothesis that all methods are equivalent.
If it is rejected, we perform pairwise Wilcoxon signed-
rank tests to form cliques of not-significant methods, and
use critical difference plots to visualize the performance of
each signature method.

A critical difference plot shows the different variations
ordered by their average rank: for example, in Figure
2, the best variation is “Time + Basepoint” with an
average rank of 2.5. Then, a thick line indicates that
the Wilcoxon test between variations inside the clique
is not rejected at significance threshold of 5%, subject
to Bonferroni’s multiple testing correction. In Figure 2
there are two groups of significantly different variations:
one with “Basepoint” and “None” and one with all other
variations.

We refer the reader to Appendix C for further details on
the methodology, such as precise architectural choices,
learning rates, and so on.

4.2. Results

Due to the large number of variations and datasets
considered, we present only the critical difference plots in
the main paper. See Appendix D for all the tables of the
underlying numerical values.

Figure 2. Performance of invariance-removing augmentations.

Augmentations We split the augmentations into two
categories. The first category consists of those
augmentations which remove the signature’s invariance
to translation (basepoint augmentation, invisibility-reset
augmentation) or reparameterisation (time augmentation).
We see in Figure 2 that augmenting with time, and either
basepoint or invisibility-reset, are both typically important.
This is expected; in general a problem need not be invariant
to either translation or reparametersiation.

Figure 3. Performance of other augmentations.
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The second category consists of those augmentations which
either seek to reduce dimensionality or introduce additional
information. We see in Figure 3 that most augmentations
actually do not help matters, except for lead-lag which
usually represents a good choice. We posit that the best
augmentation is likely to be dataset dependent, so we break
this down by dataset characteristics in Table 6.

Table 1. Average ranks for different augmentations by data type.
Lower is better. CP (2) stands for coordinate projections with
pairs and LP for Learnt projections.

Augmentation

Data type None Lead-lag CP (2) LP MHSP

EEG 4.88 4.83 3.13 2.75 2.75
HAR 2.25 1.78 3.50 6.50 6.50
MOTION 2.63 1.75 4.50 7.33 5.00
OTHER 2.88 3.92 2.63 6.00 5.21

Here we indeed see that there is generally a better
choice than doing nothing at all, but that this better
choice is dependent on some characteristic of the dataset.
For example, learnt projections and multi-headed stream
preserving transformations do substantially better on EEG
datasets, while lead-lag is better for human action and
motion recognition.

Figure 4. Performance of different windows.

Windows We consider the possibility of global, sliding,
expanding, and dyadic windows. The results are shown
in Figure 4. We see that the dyadic and expanding
windows are significantly better than sliding and global
windows. The poor performance of sliding windows is
a little surprising, but tallies with the observations of
Fermanian (2019). This is an important finding, as global
and sliding windows tend to be commonly used with
signature methods.

Signature versus logsignature transforms We consider
the signature and logsignature transforms with depths
ranging from 1 to 6. As higher depths always produce
more information, we define the performance of the
(log)signature transform as the best performance across
all depths. With this metric, the signature transform is
significantly better than the logsignature transform, with a
p-value of 0.01 for the Wilcoxon signed-rank test.

The key results To conclude, these results show that
invariance-removing transformations such as time and

basepoint augmentations should a priori be used, that
the lead-lag performs well but not significantly better
than no additional augmentation, and that the hierarchical
dyadic window performs significantly better than the
sliding and global ones. The poor performance of deep
learning approaches for augmentation is also notable and
an additional motivation for this work: although slightly
technical, the augmentations tailored to the signature
transform are a significant addition in a machine learning
pipeline and cannot be easily replaced by neural networks.

4.3. Further results

See Appendix D for further results, in particular on
the running times, the different types of rescaling,
augmentations broken down by dataset characteristics,
an additional study on signature depth, and the precise
numerical results for each individual test considered here.

5. The canonical signature pipeline
In this section we define the canonical signature pipeline.
Using the results from Section 4 we evaluate the top
performing options over all the datasets so as to provide a
domain-agnostic starting point for any dataset, from which
other variations can be easily explored. We show that this
pipeline shows competitive performance against traditional
benchmarks and even against deep neural networks.

5.1. Definition

In a nutshell, the pipeline consists in applying the basepoint
and time augmentations, a hierarchical dyadic window
and a signature transform, which can be written as a
particular case of equation 6 as follows. Let W be a
hierarchical dyadic window of depth q, φt and φb be
the time and basepoint augmentations, then the canonical
signature pipeline may be written as

zj = SN ◦W j ◦ φb ◦ φt(x), j ∈ {1, . . . , 2q − 1}. (7)

We give a graphical depiction of this in Figure 5. Signature
and window depths (N , q) must be optimised for the
problem (typically via cross-validation). We note that
this canonical method may be adapted to the problem
at hand in two ways: if the problem is known to be
parametrization invariant, as is the case for example
for characters recognition, then the time augmentation
should not be applied. Moreover, if the problem is
translation-invariant, then the basepoint augmentation is
not applied. We emphasise that this pipeline does not
represent a best option for every application, but is meant
to represent a compromise between broad applicability,
ease of implementation, computational cost, and good
performance.
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Figure 5. Pictorial representation of the canonical signature pipeline. First, we apply the time and basepoint augmentations to the input
paths, then we compute the signature features over dyadic windows, and finally compute the signature features over each dyadic window.
These features can now be compiled together and fed into any standard machine learning classifier.

5.2. Performance

We validate the performance of the pipeline against the
26 datasets in the multivariate UEA archive1. To our
knowledge, the most recent benchmarks for the UEA
archive are the results from Ruiz et al. (2020). We
compare their results to the canonical signature pipeline
with a random forest classifier—see Appendix C.3 for more
details.

The benchmarks include variants on classical Dynamic
Time Wrapping (DTWI, DTWD and DTWA); an ensemble
of univariate classifiers, HIVE COTE (Bagnall et al., 2020),
known to be highly perfromant in the univariate case; a
random shapelet forest (Karlsson et al., 2016), denoted
gRSF, and a bag of words based algorithm, MUSE (Schäfer
& Leser, 2017); two deep learning methods, TapNet (Wang
et al., 2017) and MLCN (Karim et al., 2019). The MLCN
architecture combines long short term memory layers
(LSTM) and convolutional layers while TapNet combines
3 blocks: random projections on the different dimensions,
convolutional layers and a final attention block to compare
candidate time series representations.

Figure 6. Performance on UEA datasets.

Figure 6 shows the critical difference plot of this
comparison. The signature pipeline is in the first clique,
that is the group of classifiers that achieve the best accuracy
while not being significantly different from one another.
The two algorithms with a better rank than the signature

1This is not to be confused with the UCR archive which is a
collection of 128 univariate datasets.

pipeline are MUSE and HIVE-COTE. It is worth noting
that MUSE is very memory intensive—Ruiz et al. (2020)
report that it could not finish on 5 of the 26 UEA datasets
on a computer with 500GB of memory—whilst HIVE-
COTE is an ensemble of several sub-classifiers, and thus
has very high training and inference costs. On the other
hand, all experiments for the canonical signature pipeline
were completed with no memory errors on a computer with
less memory, and are significantly faster to run than HIVE-
COTE—see Appendix D.

The canonical signature pipeline is meant to be a sensible
starting point from which the user can propose additional
variations following the structure defined in equation 6, but
as a standalone classifier this pipeline performs comparably
to state-of-the-art classifiers, on the UEA data, whilst being
less computationally demanding.

6. Conclusion
We introduce a generalised signature method as a
framework to capture recently proposed variations on the
signature method. We go on to perform a first-of-its-kind
extensive empirical investigation as to which elements of
this framework are most important for performance in a
domain-independent setting. In particular, we highlight
the performance of hierarchical dyadic windows and
signature-tailored augmentations such as lead-lag, time
and basepoint. As a result, we are able to present
a canonical signature pipeline that represents a best-
practices domain-agnostic starting point, which shows
competitive performance against state-of-the-art classifiers
for multivariate time series classification.
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Supplementary material
A. Augmentations
We recall that an augmentation is a map

φ : S(Rd)→ S(Re)p

We give below the precise definition of the different augmentations considered in the study, which are summarized in
Table 2. These augmentations were not typically introduced using such language, so this serves as a reference for how the
existing literature may be interpreted through the generalised signature method.

Throughout the section, we consider a sequence x = (x1, . . . , xn) ∈ S(Rd) and timestamps t = (t1, . . . , tn) ∈ S(R). We
recall that if x is regularly sampled then t is usually set to t = (1, . . . , n).

Time augmentation We recall the definition of the time augmentation:

φ(x) =
(
(t1, x1), . . . , (tn, xn)

)
∈ S(Rd+1).

It ensures uniqueness of the signature transformation and removes the parametrization invariance (Levin et al., 2013).

Invisibility-reset augmentation First introduced by Yang et al. (2017), the invisibility-reset augmentation consists in
adding a coordinate to the sequence x that is constant equal to 1 but drops to 0 at the last time step, i.e.,

φ(x) =
(
(1, x1), . . . , (1, xn−1), (1, xn), (0, xn), (0, 0)

)
∈ S(Rd+1).

This augmentation adds information on the initial position of the path, which is otherwise not included in the signature as
it is a translation-invariant map.

Basepoint augmentation Introduced by Kidger & Lyons (2020), the basepoint augmentation has the same goal as the
invisibility-reset augmentation: removing the translation-invariant property of the signature. It simply adds the point 0 at
the beginning of the sequence:

φ(x) = (0, x1, . . . , xn) ∈ S(Rd).

The main difference compared to the invisibility-reset augmentation is that the signature of x is contained in the signature
of the invisibility-reset augmented path, whereas it is not in the signature of the basepoint augmented path. The price paid
is that the invisibility-reset augmentation introduces redundancy into the signature, and is more computationally expensive
due to the additional channel. (Recall that the signature method scales as O(dN ), where d is the input channels and N is
the depth of the (log)signature.)

Lead-lag augmentation The lead-lag augmentation, introduced by Chevyrev & Kormilitzin (2016) and Flint et al. (2016)
has been used in several applications (see for example Lyons et al. (2014); Kormilitzin et al. (2016); Yang et al. (2017)). It
adds lagged copies of the path as new coordinates. This then explicitly captures the quadratic variation of the underlying
process (Flint et al., 2016). As many different lags as desired may be added. If there is a single lag of a single timestep,
then this corresponds to

φ(x) = ((x1, x1), (x2, x1), (x2, x2), . . . , (xn, xn)) ∈ S(R2d).

Coordinate projections For multidimensional streams, one may want to compute the signature of a subset of coordinates
individually, rather than the signature of the whole stream; doing so restricts the interaction considered by the signature to
just those between the projected coordinates. Let x1, . . . ,xd ∈ S(R) denote the different coordinates of x ∈ S(Rd).

Then we define the singleton coordinate projection as

φ(x) =
(
(t,x1), (t,x2), . . . , (t,xd)

)
∈ S(R2)d,

whilst considering all possible pairs of coordinates yields the augmentation

φ(x) =
(
(t,x1,x2), (t,x1,x3), . . . , (t,xd,xd−1)

)
∈ S(R3)d(d−1),
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Table 2. Summary of the different augmentations

e p Property

Fixed augmentations

None d 1
Time d+ 1 1 sensitivity to parametrization,

uniqueness of the signature map
Invisibility-reset d+ 1 1 sensitivity to translation
Basepoint d 1 sensitivity to translation
Lead-lag 2d 1 information about quadratic variation,

uniqueness of the signature map
Coordinates projection dimensionality reduction

with singletons 2 d
with pairs 3 d(d− 1)
with triplets 4 d(d2 − 1)

Random projections e p dimensionality reduction

Learnt augmentations

Learnt projections e p data-dependent and linear
Stream-preserving neural network e 1 data-dependent
Multi-headed stream-preserving NN e p data-dependent

and all possible triples yields the augmentation

φ(x) =
(
(t,x1,x1,x2), (t,x1,x1,x3), . . . , (t,xd,xd,xd−1)

)
∈ S(R4)d(d

2−1).

The decision to always include a time dimension is a somewhat arbitrary one, and it may alternatively be excluded if
desired. (This is done so as to make sense of singleton coordinate projections; otherwise the result is a collection of
univariate time series, for which the signature extracts only the increment due to the tree-like equivalence property.)

Random projections When the dimension of the input path is very large, Lyons & Oberhauser (2017) have proposed to
project it into a smaller space by taking multiple random projections. Let e < d and let Ai : Rd → Re be random affine
transformations indexed by i ∈ {1, . . . , p}. Then φ is defined as

φ(x) = ((A1x1, . . . , A1xn), . . . , (Apx1, . . . , Apxn)) ∈ S(Re)p.

Learnt projections Rather than taking random projections, Liao et al. (2019) learn it from the data. This takes exactly
the same form as the random projections, except that the Ai are learnt.

Stream-preserving neural network Bonnier et al. (2019) introduce arbitrary learnt sequence-to-sequences maps prior
to the signature transform, and refer to such maps, when parameterised as neural networks, as stream-preserving neural
networks. For example these may be standard convolutional or recurrent architectures. In general this may be any learnt
transformation

φ : S(Rd)→ S(Re).

Multi-headed stream-preserving neural network A straightforward extension of stream-preserving neural networks is
to use multiple such networks, so as to avoid a potential bottleneck through the single signature map that it is eventually
used in. Letting φ1, . . . , φp be p different stream-preserving neural networks, then this gives an augmentation

φ(x) = (φ1(x), . . . , φp(x)) ∈ (S(Re))p.

B. Rescaling
The signature transform can be written as a sequence of tensors, indexed by k ∈ {1, . . . , N}. The k-th term is of size
O(1/k!), as it is computed by an integral over a k-dimensional simplex. It is typical that rescaling these terms to be O(1)
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will aid subsequent learning procedures.

One option is to simply multiply the k-th term by k!, which we call post-signature scaling.

However, it is possible that the previous option may suffer from numerical stability issues. Thus we also explore the
performance of an option, called pre-signature scaling, which may alleviate this, which is to multiply the input x by some
scaling factor α ∈ R. Then the k-th term will be of size O(α

k
/k!), and so by taking α = (N !)1/N the N -th term in

the signature will be O(1); the trade-off is that Stirling’s approximation then shows that the N/2-th term will be of size
O(2N/2).

C. Implementation details
C.1. General notes

Code All the code for this project is available at [redacted for anonymity].

Libraries The machine learning framework used was PyTorch (Paszke et al., 2017) version 1.3.1. Signatures and
logsignatures were computed using the Signatory library (Kidger & Lyons, 2020) version 1.1.6. Scikit-learn (Pedregosa
et al., 2011) version 0.22.1 was used for the logistic regression and random forest models. The experiments were tracked
using the Sacred framework (Greff et al., 2017) version 0.8.1.

Normalisation Every dataset was normalised so that each channel has mean zero and unit variance.

Architectures Two different GRU models were used on every dataset; a ‘small’ one with 32 hidden channels and 2
layers, and a ‘large’ one with 256 hidden channels and 3 layers.

Likewise, two different Residual CNN models were considered. The ‘small’ one used 6 blocks, each composed of batch
normalisation, ReLU activation, convolution with 32 filters and kernel size 4, batch normalisation, ReLU activation, and
a final convolution with 32 filters and kernel size 4, so that there are also 32 channels along the ‘residual path’. A final
two-hidden-layer neural network with 256 neurons was placed on the output. The ‘large’ is similar, except that it used 128
filters in both the blocks and the residual path, had 8 blocks, used a kernel size of 8, and the final neural network had 1024
neurons.

The logistic regression was performed three times with different amounts of L2 regularisation, with scaling
hyperparameters of 0.01, 0.2 and 1; for every experiment the regularization hyperparameter achieving the best accuracy on
the test set was used.

The random forest used the default Scikit-learn implementation with a maximum depth of 6 and 100 trees.

Optimiser The GRU and CNN were optimised using Adam (Kingma & Ba, 2015). The learning rate was 0.01 for the
GRU, and 0.001 for the residual CNN. The small models were trained for a maximum of 500 epochs; the large models were
trained for a maximum of 1000 epochs. The learning rate was decreased by a factor of 10 if validation loss did not improve
over a plateau of 10 epochs. Early stopping was used if the validation loss did not improve for 30 epochs. After training
the parameters were always rolled back to those that demonstrated the best validation loss over the course of training. The
batch size used varied by dataset; in each it was taken to be the power of two that meant that the number of batches per
epoch was closest to 40.

Computing infrastructure Experiments were run on an Amazon AWS G3 Instance (g3.16xlarge) equipped with 4 Tesla
M60s, parallelized using GNUParallel (Tange, 2011).

C.2. Analysis of variations of the signature method

Splits The UEA archive comes with a pre-defined train-test split, which we respect. We take an 80%/20% train/validation
split in the training data, stratified by class label. For the Human Activities and Postural Transitions dataset, we
take a 60%/15%/25% train/validation/test split from the whole dataset. For the Speech Commands dataset, we take a
68%/17%/15% train/validation/test split from the whole dataset. (These somewhat odd choices corresponding to taking
either 25% or 15% of the dataset as test, and then splitting the remaining 80%/20% between train and validation.) These
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train/validation splits are only used for the training of the GRU and CNN classifiers.

Combinations In total we tested 8569 different combinations.

The variations tested are divided into groups. The first group consists of the sensitivity-adding augmentations, namely time,
basepoint and invisibility-reset. Relative to the baseline model, we test every possible combination of these. (Including
using none of them.)

The second group consists of those other augmentations, namely the lead-lag, singleton coordinate projection, pair
coordinate projection, triplet coordinate projection, random projections, learnt projections, and multi-headed stream
preserving neural networks, and finally also the case of no additional augmentation.

For the random projections, we consider four possibilities, with e ∈ {3, 6} and p ∈ {2, 5}, all relative to the baseline
model.

For no additional augmentation, lead-lag, coordinate projections, learnt projections, and the multi-headed stream preserving
neural networks, we compose them with the time, time+basepoint and time+invisibility-reset augmentations (the clear best
three from the first group), all relative to the baseline model.

For the learnt projections, we consider four different possibilities corresponding to e ∈ {3, 6} and p ∈ {2, 5}; together
with the time/time+basepoint/time+invisibility-reset cases this yields a total of twelve possibilities.

For the multi-headed stream-preserving neural networks, we again consider four different possibilities corresponding to
e ∈ {3, 6} and p ∈ {2, 5}, for a total of twelve possible augmentation strategies. In each the neural network operates
elementwise, so as to map one sequence to another, and is given by a feedforward neural network of three hidden layers
separated by ReLU activation functions. When e = 3 the hidden layers have 16 neurons each, and when e = 6 they have
32 neurons each.

For both the learnt projections and multi-headed stream-preserving neural networks, training these requires
backpropagating through the model, so these were only considered for the GRU and residual CNN model. (The logistic
regression model would in principle be possible as well, except that we ended up implementing this through Scikit-learn
rather than PyTorch.)

We note that there are a great many possible ways of doing stream preserving neural networks, of which these are a small
fraction. Their relatively weak performance here may likely be improved upon with greater tuning on an individual task,
or the selection of better final models than were considered here.

The third group consisted of the different windows. Recall that the baseline model used a global window; we then consider
varying this to two possible sliding windows, two possible expanding windows, and three possible dyadic windows. The
two possible sliding/expanding windows are chosen so that either 5 or 20 windows are applied across the full length of the
dataset. The three possible dyadic windows are depths 2, 3, 4. Thus in total there are 8 possible window combinations we
consider.

The fourth group consists of rescaling options, namely no rescaling, pre-signature rescaling, and post-signature rescaling.

Omissions For the empirical study on the variations on the signature method, we excluded those UEA datasets with
a dimension d over 60, so as to reduce the computational cost. This results removes 6 of the 30 datasets from the
study, namely DuckDuckGeese, FaceDetection, Heartbeat, InsectWingbeat, MotorImagery, and PEMS-SF. These were
nonetheless used in the demonstration of performance of the canonical signature method in Figure 6. Furthermore those
combinations of dataset/variation/model which produced more than 105 signature features were omitted, to keep the
computation managable. See Table 3.

C.3. The canonical signature pipeline

For each dataset, we implement the following steps. First, the sequences are augmented with time and basepoint
augmentations. Then, we consider every combination of signature depth in {1, 2, 3, 4, 5, 6} and hierarchical dyadic window
depth in {2, 3, 4}. For each of these choices, we perform a randomized grid search on a random forest classifier to optimize
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Table 3. Summary of the number of combinations considered and omitted.

Variations # Variations # Classifiers # Omitted # Total
Combinations Combinations

Basic augmentations (Figure 2) 6 6 54 936

Other augmentations (Figure 3)
Lead-lag/ None 3 6 100/27 468
Coordinates projection (1)/(2)/(3) 3 6 12/12/54 468
Random projections 4 6 32 624
Learnt projections / MHSP 12 4 348/176 1248

Windows (Figure 4) 8 6 227 1248

Signature/Logsignature transform 12 6 361 1872

Rescalings (Figure 8) 3 6 12 468

Total 1415 9984

its number of trees and maximal depth parameters. We test 20 combinations randomly sampled from the following grids:

n_trees = [50, 100, 500, 1000],

max_depth = [2, 4, 6, 8, 12, 16, 24, 32, 45, 60, 80,None].

Note that a maximal depth set to ‘None’ means that the trees are expanded until all leaves contain exactly one sample.
Finally, we choose the combination of signature and hierarchical dyadic window depths which maximise the out-of-bag
score.

D. Additional results
D.1. Analysis of variations of the signature method

Running time To get a sense of the cost of each augmentation or window, we present the run times of each
augmentation/model combination, and each window/model combination. (The times for varying between signature and
logsignature, and between different rescalings, are largely insignificant.) See Table 4.

The run times are averaged over every UEA dataset. As the datasets are of very different sizes this thus represents quite a
crude statistic, and in particular produces very large variances, so these are most meaningful simply with respect to each
other.

Sensitivity-inducing augmentations broken down by dataset type Table 5 shows the average rank of each of the first
group of augmentations (that add sensitivity to certain kinds of perturbation) by dataset type, where the types are taken
from Bagnall et al. (2018). (This may be regarded as a companion to Table 6.)

It is interesting to note that for EEG data, it seems better not to consider the time augmentation, whereas it is the case for
other applications. In particular the combination of time and basepoint augmentations achieve the best ranks for human
action and motion recognition (HAR and MOTION in Table 5). Recognizing an action may not be translation-invariant
nor invariant by time reparametrization.

Other augmentations broken down by dataset characteristichs Table 6presents the average ranks of the other
augmentations borken down by some characteristics of the datasets.

Here we see that there is generally a better choice than doing nothing at all, but that this better choice. For example
on long or high-dimensional datasets, coordinate projections often perform well, whilst multi-headed stream preserving
transformations do substantially better on EEG datasets. Lead-lag remains a strong choice in many cases.

Depth study on the signature transform In the main text we focused on the difference between the signature and
logsignature transforms, and stated that larger depths must be chosen by a bias-variance tradeoff. Here we consider varying
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Table 4. Average run time (in seconds) for various experiments. mean (std), averaged over all UEA datasets.

Classifier

CNN GRU Logistic Random
regression forest

Time augment & Global window (Baseline) 69.8 (98.0) 22.2 (31.8) 2.67 (7.09) 2.23 (4.84)

Augmentation

None 48.1 (63.5) 16.8 (33.6) 3.55 (9.91) 66.3 (321)
Lead-lag 48.58 (69.99) 15.2 (18.1) 5.76 (11.7) 3.35 (6.04)
Coordinates projection (1) 32.8 (31.49) 13.4 (17.8) 1.37 (4.2) 12.2 (59.3)
Coordinates projection (2) 41.5 (51.4) 22.6 (62.3) 3.01 (8.54) 42.3 (203)
Coordinates projection (3) 41.3 (39.9) 19.1 (24.5) 5.41 (9.76) 6.3 (14.1)
Random projection 62.2 (70.1) 21.1 (31.2) 0.86 (1.25) 1.4 (2.47)
Learnt projection 917 (1288) 752 (972) – –
Multi-headed stream-preserving 1051 (1677) 1758 (4442) – –

Window

Sliding 90.6 (120) 79.4 (175) 10.1 (27.4) 6.4 (16.0)
Expanding 102 (133) 68.7 (115) 9.98 (27.2) 7.17 (19.0)
Dyadic 725 (868) 56.9 (65.1) 12.5 (33.2) 7.59 (18.3)

Table 5. Average ranks for different augmentations by type of data. Lower is better.

Augmentation

Data type None Time Basepoint Invisibility-reset Time + Time +
Basepoint Invisibility-reset

EEG 3.88 3.50 4.00 2.00 4.00 3.63
HAR 5.00 2.95 4.85 3.65 2.00 2.55
MOTION 5.25 2.75 5.75 3.88 1.50 1.88
OTHER 4.43 3.31 4.88 3.19 2.87 2.31

the depth together with the choice of signature or logsignature, and taking the best transform for each depth. See Figure 7.
We see that larger depths do indeed generally correspond to increased performance, up to a point. The optimal depth will
depend on the complexity of the task, as the number of features increases exponentially with the depth.

Figure 7. Critical differences plot for the depth study on the UEA datasets.

Rescaling critical difference diagram In Figure 8, we see that pre-signature rescaling performs significantly worse than
the other two options and that no significant difference between post-rescaling and no rescaling is found.

D.2. Complete results

We present in Tables 7, 8, 9, 10, 11 and 12 the performance of the different signature variations on each dataset. The tables
were obtained by maximizing the test accuracy of the signature method over the different classifiers considered. Recall
that some values are omitted due to the large number of signature features that would be obtained.
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Table 6. Average ranks for different augmentations by dataset characteristics. Lower is better.
Augmentation

Characteristic None Lead-lag Coordinates projection Random
Projection

Learnt
Projection MHSP(1) (2) (3)

Data type

EEG 4.88 4.83 6.50 3.13 5.67 4.38 2.75 2.75
HAR 2.25 1.78 7.20 3.50 2.90 4.75 6.50 6.50
MOTION 2.63 1.75 7.00 4.50 2.13 5.00 7.33 5.00
OTHER 2.88 3.92 5.44 2.63 3.29 4.69 6.00 5.21

Series length

<50 3.20 2.20 7.40 3.20 2.70 5.10 7.00 5.20
50-100 2.20 1.33 6.00 4.10 2.75 6.20 4.80 5.10
100-500 2.28 2.57 7.28 3.50 2.63 4.17 6.63 5.33
>500 4.00 4.00 5.28 2.64 4.57 4.07 4.40 5.60

Dimension d

2 4.67 3.5 6.33 4.33 4.0 2.83 6.67 3.67
3-5 2.5 2.21 6.36 3.43 3.14 4.64 6.67 6.83
6-8 3.25 2.5 6.94 3.0 3.56 5.0 5.29 6.0
>8 2.25 3.75 6.31 3.19 2.5 5.19 5.29 4.19

Figure 8. Performance of different rescalings

D.3. Canonical signature method

In Table 13 we give the full results for our canonical signature method on all UEA datasets, together with the results of
Ruiz et al. (2020) used in Figure 6.

Finally, we give in Table 14 the hyperparameters that were selected for each dataset in the signature pipeline model.
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Table 7. Accuracy of sensitivity-inducing augmentations per dataset
Augmentation

Dataset None Time Basepoint Invisibility-reset Time + Time +
Basepoint Invisibility-reset

ArticularyWordRecognition 96.0 96.3 95.7 96.3 97.7 97.0
AtrialFibrillation 46.7 46.7 40.0 33.3 40.0 40.0
BasicMotions 100.0 100.0 100.0 100.0 100.0 100.0
CharacterTrajectories 88.3 93.2 86.4 88.7 93.8 93.7
Cricket 91.7 94.4 94.4 97.2 97.2 95.8
ERing 80.0 92.6 77.4 89.6 91.9 92.2
EigenWorms 72.5 79.4 74.8 76.3 87.0 81.7
Epilepsy 84.8 89.9 91.3 91.3 97.1 94.9
EthanolConcentration 27.8 29.3 33.5 41.8 34.6 41.4
FingerMovements 55.0 52.0 57.0 58.0 55.0 56.0
HandMovementDirection 29.7 33.8 32.4 33.8 36.5 32.4
Handwriting 21.9 30.8 23.6 24.6 30.6 28.7
JapaneseVowels 85.4 85.1 97.3 98.1 97.3 98.1
LSST 42.0 47.4 44.0 44.4 50.9 48.7
Libras 72.8 84.4 65.0 75.0 80.0 77.2
NATOPS 81.7 88.3 79.4 79.4 91.1 92.2
PenDigits 91.1 97.1 88.3 93.1 96.8 97.1
PhonemeSpectra 4.7 8.2 4.3 5.7 10.0 8.1
RacketSports 78.9 80.3 78.9 82.9 82.9 81.6
SelfRegulationSCP1 81.6 83.3 76.8 84.0 75.4 85.0
SelfRegulationSCP2 57.2 56.7 56.1 56.7 56.1 55.0
SpokenArabicDigits 82.5 85.5 80.5 88.0 85.1 90.1
StandWalkJump 60.0 46.7 40.0 46.7 40.0 46.7
UWaveGestureLibrary 84.1 87.5 79.7 82.8 87.5 83.4
Human Activity 73.0 76.6 92.3 92.2 93.0 93.8
Speech Commands 71.4 75.9 74.7 74.9 79.7 79.5

Average rank 4.69 3.12 4.87 3.29 2.5 2.54

Table 8. Accuracy of other augmentations per dataset
Augmentation

Dataset None Lead-lag Coordinates projection Random Learnt MHSP(1) (2) (3) projection projection

ArticularyWordRecognition 97.7 96.3 83.3 95.7 97.0 95.3 73.7 80.3
AtrialFibrillation 46.7 40.0 53.3 53.3 46.7 66.7 46.7 53.3
BasicMotions 100.0 100.0 80.0 100.0 100.0 100.0 97.5 87.5
CharacterTrajectories 93.8 95.3 43.9 93.2 93.8 93.3 89.6 91.1
Cricket 97.2 98.6 90.3 97.2 95.8 88.9 69.4 56.9
ERing 92.6 94.8 79.3 89.3 91.9 74.4 62.2 61.1
EigenWorms 87.0 87.8 50.4 84.0 89.3 78.6 – –
Epilepsy 97.1 97.1 55.8 95.7 95.7 81.9 67.4 65.9
EthanolConcentration 41.4 39.9 42.2 43.3 42.2 30.4 32.3 30.0
FingerMovements 56.0 – 59.0 58.0 – 55.0 60.0 65.0
HandMovementDirection 36.5 31.1 31.1 40.5 37.8 37.8 33.8 44.6
Handwriting 30.8 33.5 11.3 27.8 30.0 21.6 12.6 13.2
JapaneseVowels 98.1 97.6 94.1 97.8 97.6 84.1 95.4 95.9
LSST 50.9 55.6 43.5 51.7 52.8 43.7 34.4 39.8
Libras 84.4 86.7 47.8 83.9 85.0 86.7 73.3 81.1
NATOPS 92.2 – 33.3 90.6 91.1 85.6 83.9 81.7
PenDigits 97.1 98.3 60.2 96.8 97.2 96.7 96.5 97.4
PhonemeSpectra 10.0 – 4.5 9.4 10.6 8.9 7.2 7.7
RacketSports 82.9 82.2 53.3 85.5 84.2 75.7 73.7 75.0
SelfRegulationSCP1 85.0 86.0 61.8 85.0 84.0 81.6 86.7 84.6
SelfRegulationSCP2 56.7 57.2 55.6 58.9 55.6 60.6 59.4 57.8
SpokenArabicDigits 90.1 96.6 58.5 86.0 90.0 83.0 88.0 86.0
StandWalkJump 46.7 40.0 40.0 53.3 40.0 53.3 – –
UWaveGestureLibrary 87.5 88.8 50.6 85.6 87.5 86.2 74.1 75.6
Human Activity 93.8 93.6 75.8 93.2 93.6 69.2 91.3 91.5
Speech Commands 79.7 – 14.9 77.1 – 70.2 – 76.1

Average ranks 2.9 2.77 6.52 3.33 3.23 4.71 5.83 5.31
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Table 9. Accuracy of windows per dataset
Window

Dataset Global Sliding Expanding Dyadic

ArticularyWordRecognition 96.3 89.3 99.0 99.0
AtrialFibrillation 46.7 46.7 46.7 60.0
BasicMotions 100.0 100.0 100.0 100.0
CharacterTrajectories 93.2 94.6 96.9 97.1
Cricket 97.2 93.1 97.2 95.8
ERing 90.7 88.5 91.9 94.8
EigenWorms 80.2 74.8 78.6 76.3
Epilepsy 89.9 92.8 92.0 94.2
EthanolConcentration 30.4 38.8 30.0 35.7
FingerMovements 50.0 – – –
HandMovementDirection 33.8 33.8 36.5 33.8
Handwriting 30.1 21.5 30.2 27.2
JapaneseVowels 85.1 76.5 88.1 89.2
LSST 47.8 43.1 48.3 46.6
Libras 83.3 85.6 91.1 90.0
NATOPS 93.3 84.4 90.6 –
PenDigits 95.8 – – 97.6
PhonemeSpectra 8.6 9.2 9.6 10.4
RacketSports 82.2 80.3 84.2 88.2
SelfRegulationSCP1 82.6 87.4 84.0 86.7
SelfRegulationSCP2 56.7 60.6 54.4 56.1
SpokenArabicDigits 85.5 91.5 93.7 96.6
StandWalkJump 46.7 53.3 46.7 53.3
UWaveGestureLibrary 86.6 79.4 89.1 89.7
Human Activity 76.1 73.0 80.4 81.7
Speech Commands 75.9 76.5 82.3 83.0

Average ranks 2.83 3.04 2.17 1.73

Table 10. Accuracy of signature and logsignature transforms per dataset.
Transform

Dataset Signature Logsignature

ArticularyWordRecognition 97.7 97.3
AtrialFibrillation 60.0 53.3
BasicMotions 100.0 100.0
CharacterTrajectories 93.8 93.8
Cricket 100.0 100.0
ERing 90.0 89.3
EigenWorms 79.4 81.7
Epilepsy 93.5 91.3
EthanolConcentration 31.9 30.0
FingerMovements 59.0 56.0
HandMovementDirection 40.5 40.5
Handwriting 35.3 24.5
JapaneseVowels 85.9 86.8
LSST 52.0 46.4
Libras 90.6 87.8
NATOPS 89.4 91.7
PenDigits 97.8 97.5
PhonemeSpectra 8.9 7.6
RacketSports 85.5 84.9
SelfRegulationSCP1 84.0 83.3
SelfRegulationSCP2 57.2 56.1
SpokenArabicDigits 87.5 85.8
StandWalkJump 53.3 53.3
UWaveGestureLibrary 90.0 86.9
Human Activity 78.7 78.3
Speech Commands 75.9 76.3

Average ranks 1.25 1.75
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Table 11. Accuracy of rescaling choices per dataset
Rescaling

Dataset None Post Pre

ArticularyWordRecognition 97.3 97.0 97.7
AtrialFibrillation 53.3 53.3 46.7
BasicMotions 100.0 100.0 100.0
CharacterTrajectories 94.6 94.6 94.6
Cricket 98.6 97.2 97.2
ERing 93.7 93.7 93.0
EigenWorms 80.9 80.9 79.4
Epilepsy 92.0 92.0 91.3
EthanolConcentration 31.2 31.6 30.0
FingerMovements 54.0 54.0 50.0
HandMovementDirection 35.1 32.4 29.7
Handwriting 36.6 36.4 37.1
JapaneseVowels 87.3 85.9 85.7
LSST 55.8 55.6 55.4
Libras 85.0 86.1 84.4
NATOPS 92.8 92.8 91.7
PenDigits 96.6 96.7 96.7
PhonemeSpectra 8.0 8.1 8.2
RacketSports 84.2 84.2 83.6
SelfRegulationSCP1 79.5 83.3 84.6
SelfRegulationSCP2 56.1 57.2 56.7
SpokenArabicDigits 90.5 90.5 90.2
StandWalkJump 46.7 53.3 46.7
UWaveGestureLibrary 87.5 87.2 87.2
Human Activity 85.0 84.6 85.1
Speech Commands 77.0 75.7 75.9

Average ranks 1.73 1.92 2.35

Table 12. Accuracy of (log)signature depth per dataset.
Depth

Dataset 1 2 3 4 5 6

ArticularyWordRecognition 83.3 96.0 97.3 97.7 95.3 –
AtrialFibrillation 40.0 40.0 60.0 33.3 40.0 53.3
BasicMotions 70.0 100.0 100.0 100.0 100.0 92.5
CharacterTrajectories 42.3 88.0 93.2 93.8 92.9 93.8
Cricket 30.6 93.1 97.2 98.6 100.0 –
ERing 77.0 89.6 90.0 89.3 88.9 84.8
EigenWorms 46.6 81.7 79.4 79.4 – –
Epilepsy 50.7 78.3 89.9 93.5 93.5 93.5
EthanolConcentration 25.5 30.8 30.0 31.2 31.9 27.4
FingerMovements 57.0 58.0 59.0 – – –
HandMovementDirection 40.5 36.5 37.8 39.2 32.4 –
Handwriting 7.3 22.4 32.4 33.3 35.3 32.7
JapaneseVowels 78.9 85.9 86.8 84.3 81.4 –
LSST 40.9 45.6 47.6 50.6 52.0 44.7
Libras 51.7 77.2 85.0 87.8 88.9 90.6
NATOPS 35.0 86.7 91.7 – – –
PenDigits 60.0 90.4 96.9 97.7 97.4 97.8
PhonemeSpectra 4.1 7.6 8.9 – – –
RacketSports 44.1 77.0 78.9 84.9 85.5 82.2
SelfRegulationSCP1 53.6 80.2 84.0 83.3 81.9 –
SelfRegulationSCP2 56.1 55.0 56.7 54.4 57.2 –
SpokenArabicDigits 52.1 85.8 85.5 87.5 – –
StandWalkJump 46.7 46.7 46.7 46.7 53.3 46.7
UWaveGestureLibrary 49.4 83.1 86.6 87.8 90.0 88.1
Human Activity 47.7 78.3 76.0 78.7 78.6 –
Speech Commands 14.8 69.6 76.3 – – –

Average ranks 4.73 3.44 2.62 2.48 2.38 3.04
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Classification method

Dataset DTWD DTWA DTWI HIVE COTE MLCN MUSE TapNet gRSF Signature
Pipeline

ArticularyWordRecognition 98.7 98.7 98.0 99.0 95.7 99.3 95.7 98.3 97.7
AtrialFibrillation 20.0 26.7 26.7 13.3 33.3 40.0 20.0 26.7 46.7
BasicMotions 97.5 100.0 100.0 100.0 87.5 100.0 100.0 100.0 100.0
Cricket 100.0 100.0 98.6 98.6 91.7 98.6 100.0 98.6 95.8
Epilepsy 96.4 97.8 97.8 100.0 73.2 99.3 95.7 97.8 95.7
EthanolConcentration 32.3 31.6 30.4 79.1 37.3 47.5 30.8 34.6 43.3
ERing 91.5 92.6 91.9 97.0 94.1 97.4 90.4 95.2 94.8
FaceDetection 52.9 52.8 51.3 65.6 55.5 63.1 60.3 54.8 61.4
FingerMovements 53.0 51.0 52.0 55.0 58.0 55.0 47.0 58.0 52.0
HandMovementDirection 18.9 20.3 29.7 44.6 52.7 36.5 33.8 41.9 20.3
Handwriting 60.7 60.7 50.9 48.2 30.9 52.2 28.1 37.5 37.9
Heartbeat 71.7 69.3 65.9 72.2 38.0 71.2 79.0 76.1 69.8
Libras 87.2 88.3 89.4 90.0 85.0 89.4 87.8 69.4 93.9
LSST 55.1 56.7 57.5 57.5 52.8 64.0 51.3 58.8 56.9
NATOPS 88.3 88.3 85.0 88.9 90.0 90.6 81.1 84.4 92.2
PenDigits 97.7 97.7 93.9 93.4 97.9 96.7 85.6 93.5 97.4
Racketsports 80.3 84.2 84.2 88.8 84.2 92.8 87.5 88.2 90.8
SelfRegulationSCP1 77.5 78.5 76.5 85.3 90.8 69.6 93.5 82.3 78.8
SelfRegulationSCP2 53.9 52.2 53.3 46.1 50.6 52.8 48.3 51.7 50.6
StandWalkJump 20.0 33.3 33.3 33.3 40.0 26.7 13.3 33.3 46.7
UWaveGestureLibrary 90.3 90.0 86.9 89.1 85.9 93.1 90.0 89.7 90.9

Average Ranks 5.6 5.2 5.9 4.0 5.6 3.2 6.4 4.8 4.3

Table 13. Results of the signature canonical pipeline along with a selection of classifiers from Ruiz et al. (2020) (including the top
performing MUSE algorithm) with a Random Forest for the UEA archive.

Signature hyperparmeters RF hyperparameters Other

Dataset Depth Dyadic depth Max depth Num estimators Training time (s)

ArticularyWordRecognition 2 2 45 500 60.3
AtrialFibrillation 1 2 None 50 35.9
BasicMotions 2 2 24 100 19.3
CharacterTrajectories 4 2 80 500 181.4
Cricket 2 4 6 500 249.0
DuckDuckGeese 1 2 16 100 140.9
ERing 2 3 8 1000 16.7
EigenWorms 3 3 12 100 250.1
Epilepsy 2 3 8 1000 42.8
EthanolConcentration 2 4 24 1000 454.2
FaceDetection 1 4 8 1000 1816.2
FingerMovements 1 2 4 100 30.8
HandMovementDirection 2 2 None 50 66.3
Handwriting 6 2 32 1000 280.3
Heartbeat 1 4 None 50 45.1
InsectWingbeat 1 3 45 1000 5367.5
JapaneseVowels 2 3 6 1000 95.4
LSST 4 2 60 1000 1590.5
Libras 6 2 None 100 28.4
MotorImagery 1 3 24 50 347.1
NATOPS 2 3 32 1000 37.8
PEMS-SF 1 3 80 1000 252.3
PenDigits 3 2 80 1000 302.3
PhonemeSpectra 2 4 45 1000 2188.7
RacketSports 3 2 None 500 13.9
SelfRegulationSCP1 3 2 None 100 186.6
SelfRegulationSCP2 3 2 6 50 138.1
SpokenArabicDigits 2 3 45 1000 1204.0
StandWalkJump 1 3 2 50 101.5
UWaveGestureLibrary 2 2 60 500 21.8

Table 14. Hyperparameters used for each dataset in the signature pipeline model.


